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Abstract

Currently the most reliable method of determining the visual quality of video sequences
is subjective testing with human observers. Since this is both time-consuming and expen-
sive, there is ongoing research on objective video quality metrics that allow to measure
the visual quality without carrying out subjective tests. A very promising approach in
the field of no-reference video quality metrics are metrics based on data analysis rather
than on modeling the human visual system. It has been shown that the results improve
when taking the temporal structure of the video sequence into account using multi-way
data analysis methods.
In this thesis I show a way of refining multi-way quality metrics based on the extraction

of H.264/AVC bitstream features by considering the internal GOP-structure of the coded
video. Normally, metrics based on multi-way data analysis require both the sequences
in the training set and the unknown sequence whose quality is to be predicted to have
exactly the same length. By splitting the video sequences into their GOPs, the metric
can be made length-independent and therefore more suitable for real-life applications
while at the same time maintaining the performance.
Furthermore, the GOP-based quality metric can be used to predict the temporal pro-

gression of the visual quality. In order to evaluate this quality estimation, I present a new
subjective test method that allows the assessment of quality fluctuations in short video
sequences since existing methods like SSCQE are not suitable for this task. Instead of
directly asking the observers about the continuos quality, I ask them about their overall
quality impression, their impression of the quality fluctuation strength, and give a choice
of different patterns that represent possible shapes of quality curves. From the answers
to these three questions, the curve of the temporal quality can be reconstructed. Finally,
I compare the results of this subjective test to the quality estimations of the GOP-based
metric. It turns out that the results of both quality measurements are highly correlated.
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Zusammenfassung

Die derzeit zuverlässigste Methode, die visuelle Qualität von Videosequenzen zu bestim-
men, ist die Durchführung subjektiver Tests mit Testpersonen. Da dies sowohl zeitauf-
wändig als auch teuer ist, gibt es laufend Forschung zu objektiven Videoqualitätsmetri-
ken, die die Messung von Videoqualität ohne subjektive Tests ermöglichen. Ein vielver-
sprechender Ansatz im Bereich der No-Reference Videoqualitätsmetriken sind Metriken,
die auf Datenanalyse und nicht auf der Modellierung des menschlichen Sehsystems (Hu-
man Visual System, HVS) basieren. Es konnte gezeigt werden, dass sich die Ergebnisse
verbessern, wenn man die zeitliche Struktur einer Videosequenz mittels multi-way Da-
tenanalysemethoden mit in die Modellierung einbezieht.
In dieser Arbeit zeige ich, wie man multi-way Qualitätsmetriken, die auf der Extrakti-

on von Merkmalen aus H.264/AVC-Bitstreams basieren, verbessern kann, indem man die
interne GOP-Struktur des kodierten Videos berücksichtigt. Normalerweise setzen Metri-
ken, die auf multi-way Datenanalysemethoden basieren, voraus, dass die Sequenzen im
Training-Set und die Sequenz deren Qualität zu messen ist, die gleiche Länge besitzen.
Teilt man die Videosequenzen in ihre GOPs auf, kann man die Metrik längenunabhängig
machen und damit ihre Anwendbarkeit auf reale Probleme verbessern, ohne dabei ihre
Leistung zu verschlechtern.
Darüber hinaus können GOP-basierte Qualitätsmetriken verwendet werden, um den

zeitlichen Verlauf der visuellen Qualität zu bestimmen. Um diese Qualitätsschätzung zu
untersuchen, stelle ich eine neue subjektive Testmethode vor, die es erlaubt, Qualitäts-
schwankungen in kurzen Videosequenzen zu messen, da bereits existierende Methoden
wie SSCQE in diesem Fall nicht ausreichend gut funktionieren. Anstatt die Testpersonen
direkt nach ihrer Einschätzung der zeitkontinuierlichen Qualität zu fragen, stelle ich drei
Fragen: eine nach der Qualität des Videos insgesamt, eine nach ihrer Einschätzung der
Schwankungsstärke der Qualität und eine nach dem groben Verlauf der Qualität anhand
von verschiedenen vorgegebenen Optionen. Aus den Antworten auf diese Fragen lässt
sich der zeitliche Verlauf der Qualität rekonstruieren. Abschließend vergleiche ich die Er-
gebnisse aus diesem Test mit der Qualitätschätzung der GOP-basierten Metrik. Es zeigt
sich, dass die Ergebnisse beider Verfahren hoch korreliert sind.
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1. Introduction

At the beginning of this thesis I want to outline the importance of video quality assess-
ment in general and the shortcomings of popular quality metrics. This is at the same
time the motivation for refining existing video quality metrics.

1.1. Visual Video Quality

Since the beginnings of processing moving pictures, it has always been of major impor-
tance to improve the visual quality of the image reproduction. Nowadays, most of the
video recording, processing, transmission, and playback take place in the digital domain
and the fields of application are almost uncountable – they reach from the more tradi-
tional forms like cinema or television to the emerging technologies of the last decades
such as video streaming or mobile communications. Unlike in the times of analog pro-
cessing, the transmission and storage of video themselves are no longer an issue for the
visual quality of video; however, both storage capacities and transmission bandwidths
now require the use of data compression techniques. Video compression can be seen as
a key technology for many applications. Without nowadays’ lossy video coding almost
every application of digital video would still be unimaginable. Whereas the capacity
of storage media and the bandwidth of internet connections are still growing fast, just
like ten years ago, transmitting and storing uncompressed video data remains unfeasi-
ble. Of course, the fastest available consumer internet connections at the moment are in
theory capable of transmitting uncompressed video data in real time – but only in Stan-
dard Definition (SD), which was state-of-the-art more than ten years ago. For example
576p (720 × 576, 25 fps) video data with 4:2:0 chroma subsampling has a bit rate of
98,88 MBit/s. Currently, private internet connections with 100 MBit/s or even more are
available in some urban areas. Nevertheless, today, television is already broadcast in HD
resolution and the first 4K UHD displays with a resolution of 3840× 2160 have already
been announced. So as long as the image resolutions keep growing, there will always be
a strong need for video compression, especially when thinking of wireless transmission
for example via cellular networks.

1.1.1. Subjective Video Quality Assessment

On the one hand, lossy video compression enables many applications, on the other hand
it naturally comes with quality degradations, which make it very important to think
about visual video quality and its measurement in detail. From imperfect cameras with
visible sensor noise, over a digital transmission that may result in the loss of data packets,
to an uncalibrated monitor that the video is displayed on: there are many factors besides
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1. Introduction

lossy coding that contribute to a possible loss in video quality. When investigating visual
quality of digital video these factors are often eliminated by using high-end camera and
display technologies and avoiding transmission errors.
The standard procedure for determining the visual quality of video material is a sub-

jective test. Winkler [47, p. 51] states that “[s]ubjective experiments represent the
benchmark for vision models in general and quality metrics in particular”. For the as-
sessment of visual quality with subjective tests there are several standards that formalize
the viewing conditions and test procedures. This helps to create reproducible and mean-
ingful results. The oldest standard is the ITU-R Recommendation BT.500 “Methodology
for the subjective assessment of the quality of television pictures” [12]. Its first version
is from 1974, and currently ITU-R Rec. BT.500-13 from 2012 is in force. Whereas
ITU-R Rec. BT.500 focuses on television, ITU-T Rec. P.910 “Subjective video quality
assessment methods for multimedia applications” [15] from 1996 is meant for multime-
dia applications. Both standards define different testing procedures that are applied in
different situations and there are even more standards for related fields like audiovisual
quality assessment.

1.1.2. Continuos Quality Assessment

Most of the subjective test methods that are defined by the standards are so-called single-
rating methods. That means that the test subject watches a video sequence, typically
about 10 seconds long, and rates the visual quality on a rating scale. There are differences
in the design of the rating scales and some methods include displaying an undistorted
reference sequence, but essentially all methods ask for the overall quality impression of
a short video sequence. While this is fine in cases where the visual quality is constant
during the test sequences, problems can occur when longer sequences are to be evaluated.
Aldridge et al. [1] presented 30 seconds of video in a subjective test and found out that the
observers were strongly influenced by the quality of the last 10 seconds of each sequence.
So it does not make sense to use sequences much longer than 10 seconds. Nevertheless,
as Winkler [47, p. 54] states, the assessment of short video sequences is in many cases
not sufficient:

All single-rating methods [. . . ] share a common drawback [. . . ]: changes in
scene complexity, statistical multiplexing or transmission errors can produce
substantial quality variations that are not evenly distributed over time; severe
degradations may appear only once every few minutes.

To cover such cases, the ITU-R Recommendation BT.500 proposes the Single Stimulus
Continuos Quality Evaluation (SSCQE) method. Instead of rating the quality after
watching a sequence, the viewers use a slider to express their perception while watching
the video sequence. Typically the displayed sequence is about 20–30 minutes long. On
the one hand, this method allows to determine the temporal dimension of visual quality;
on the other hand, the results are more complicated to analyze, for example because of
different reaction times or context effects [47]. Pinson and Wolf [36] compared SSCQE
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to the single-rating methods Double Stimulus Continuos Quality Scale (DSCQS) and
Double Stimulus Comparison Scale (DSCS) from ITU-R Rec. BT.500. They found that
SSCQE is capable of producing results similar to DSCQS and DSCS when the test is
designed properly. Nevertheless, they also state that on average the observers need 6
seconds to adapt the slider position to a new quality level; so statements about quick
quality changes seem to be difficult to obtain with SSCQE.
Gauss et al. [8] give an example for the application of SSCQE for determining temporal

quality changes of video sequences. The distortions were caused by packet loss and the
individual video sequences of 30 seconds each were combined to a 30 minute program.
Although their experiment proved to be suitable for their purposes, they had to deal
with several problems regarding the accuracy of the test results. Only after an advanced
selection process in which the data from over half of all observers were discarded, the
results fulfilled their expectations.
So apparently, there is no subjective method that allows to assess the temporal progres-

sion of visual quality at a high sampling rate. This motivates the development of a new
subjective quality assessment method that enables the evaluation of quick changes in vi-
sual quality in short video sequences. This new method will be explained in section 3.3.1
on page 43.

1.2. Objective Video Quality Metrics

Although subjective testing is the most reliable method for determining video quality,
there is a strong need for objective quality assessment. Subjective video tests are both
time-consuming, and costly and it is nearly impossible to use subjective tests as quality
assurance in a professional production workflow.

1.2.1. Objective Video Quality Metrics

Objective video quality metrics try to estimate the visual quality from the video data as
a human observer would perceive it. These metrics can be classified into three categories:
full-reference (FR), reduced-reference (RR), and no-reference (NR) metrics [45].
Full-reference metrics use both the distorted video data and the data of the undistorted

reference as input. Obviously, this is the optimal case for a quality metric as it has the
most data at its disposal. The most popular FR metric is probably the Peak Signal-
to-Noise Ratio (PSNR), although its results are not satisfying at all. The reasons why
it is still so wide-spread are mainly its simplicity and computational performance [45].
Another very popular FR metric is the Structural Similarity (SSIM) index [44], which
outperforms the PSNR in most cases. There are many more full-reference metrics, some
of them are also available as commercial products. The more advanced methods try
to model the Human Visual System (HVS) in order to simulate the human perception.
[45, 47] offer an overview of those techniques. The Multimedia Phase I and HDTV
Phase I projects of the Video Quality Experts Group (VQEG) tried to evaluate objective
video quality metrics and decided to standardize several FR metrics. The resulting
recommendations are for example the ITU-T Recommendation J.247 [14] and the ITU-T
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1. Introduction

Recommendation J.341 [16]. A big advantage of FR metrics is also their independence
of technologies such as coding because they are based on the raw pixel data.
The class of reduced-reference quality metrics does not require the full pixel data of

the undistorted reference. It rather relies on reference features that are extracted from
the reference video. This is useful in case of transmission over a channel with limited
bandwidth. The VQEG also developed standards for RR metrics; namely ITU-T rec-
ommendation J.246 [13] and ITU-T Recommendation J.342 [17]. There are publications
that propose reference metrics that try to estimate continuos video quality as well. For
example, Masry and Hemami [31, 32] use a wavelet transform-based approach to model
the temporal properties of the HVS.
The third class of the no-reference metrics is very interesting because of its high flex-

ibility. In many applications there is no undistorted reference available and therefore
no-reference metrics are the only possible option. NR metrics often depend on a special
coding technology. For example, metrics based on the measurement of blocking arti-
facts (as described by Wang et al. [43]) can only be used on video data that has been
coded with a block-based coding technology. Even more specialized are metrics based
on H.264/AVC, like for example [7, 40, 41] or the work by Keimel et al. [20, 21, 24], the
latter of which I will improve in this thesis. In the field of NR metrics there are attempts
to measure temporal quality as well: Kawayoke and Horita [19] presented one example
of such a metric.

1.2.2. Metrics Using Multi-Way Data Analysis

The Data Analysis Approach

The traditional approach for designing objective video quality metrics tries to model
the HVS in order to reproduce the perception of a human observer. Examples for such
metrics are the SSIM [44], the quality metrics by Wolf and Pinson [48] or Watson [46].
A general problem of this approach is that it requires a sufficient understanding of the
HVS, which we currently do not possess: “In general, the development of computational
HVS-models itself is still in its infancy” [47, p. 151]. An alternative to understanding the
HVS in even more detail is the so-called data-driven approach, which does not require
this knowledge.
Data analysis methods are very common in the field of chemometrics, an introduction

to data analysis as used in this science can be found in Martens and Martens [29].
Transferring this approach to the domain of video quality, the general idea is to extract
as many feature data as possible from the video sequence for evaluation. This feature
data is then used to train a regression model with the help of ground-truth data from
subjective quality tests. After the training, the model is able to predict the quality
of an unknown sequence. There have already been some contributions using a data
analysis approach to build a no-reference video quality metric. Principal Component
Regression (PCR) as a common regression method was first used in the design of a video
quality metric by Miyahara [34].

16



1.2. Objective Video Quality Metrics

H.264/AVC Bitstream Features

Some very promising metrics are based on the extraction of H.264/AVC bitstream fea-
tures from the video data [20, 21, 24]. Features extracted directly from the H.264/AVC
bitstream have been used by Eden [7] to estimate the PSNR of interlaced HDTV video
or Slanina et al. [41], who estimate the PSNR of video sequences in CIF resolution.
Rossholm and Lövström [40] used bitstream features to estimate some other quality met-
rics additionally to the PSNR. These approaches allow to determine the full-reference
value PSNR with a no-reference method. If one is interested in the visual quality, this
is only helpful to a certain extent because – as discussed above – the PSNR does not
correlate very well with the perceived quality of a human observer. Therefore, Keimel
et al. [20, 21, 24] refined the usage of bitstream features in order to directly estimate the
visual video quality.
H.264/AVC1 [11, 18] is probably the most popular and most widely used video coding

technology in the world at the moment. It is used for coding the video on BluRay disks,
for the television broadcast via satellite, cable or terrestrial transmitters according to
DVB and other standards, and is also the most common codec for internet streaming.
For detailed information about the functionality of H.264/AVC refer to the books by
Richardson [38, 39].
The usage of features extracted directly from the H.264/AVC bitstream is very conve-

nient because no decoding or other format conversion steps are involved. While encoding
video using H.264/AVC, the encoder performs many different calculations on the tem-
poral and spatial structure of the video content in order to decide how to encode the
data. Many of these decisions can be reconstructed from the resulting bitstream and
since they affect the visual quality fundamentally, it seems to be reasonable to use this
data as feature data for the prediction of visual quality.

Extension by Multi-Way Data Analysis

Recently, Keimel et al. [24] have shown that the inclusion of the temporal dimension
by using multi-way data analysis further improves the prediction. Instead of temporally
pooling the feature data of all frames of a video sequence, the complete set of feature
data can be processed by using a multi-way regression method. One example for such
a method is the two-way version of principal component regression 2D-PCR, which was
proposed by Yang et al. [49] in order to improve face recognition algorithms. Examples
for the use of 2D-PCR for video quality metrics can be found in Keimel et al. [24, 27].
Besides PCR, Partial Least Squares Regression (PLSR) can also be used to design quality
metrics [22, 23] as well as its extension, the multilinear PLSR as introduced by Bro [5].
The latter is demonstrated in [20].

1The H.264/AVC development was started by the working group Video Coding Experts Group (VCEG)
of the International Telecommunication Union (ITU). In 2001 they joined forces with the ISO/IEC
Motion Pictures Experts Group (MPEG) and formed the Joint Video Team (JVT). In 2003 both
groups published the standard: ITU as Recommendation H.264 [18] and MPEG as ISO/IEC 14496-10
MPEG-4 Part 10, Advanced Video Codec (AVC) [11]. For this reason I call the codec H.264/AVC
in this thesis.
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1. Introduction

The price that has to be paid by including the temporal dimension into the quality
prediction model is that this requires all training sequences to consist of the same number
of frames, and also the sequence whose quality is to be predicted needs to match this
length. The reason for this is mathematical and will be explained in section 2.4.2 on
page 30. This problem impedes the application of the metric in most fields as it is not
feasible to train different regression models for each occurring length of video sequences.
The main goal of my thesis is to extend these no-reference data analysis-based met-

rics using H.264/AVC bitstream features in order to support the prediction of temporal
quality. As it turns out, this will also solve also the problem of the length-dependence of
metrics using multi-way data analysis.
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2. Design of GOP-based Video Quality
Metrics

In this chapter I will start with a brief explanation of the H.264/AVC bitstream features
that will act as input data for the video quality estimation. Then, I will explain one-
way and two-way regression methods that will be the mathematical foundation of the
proposed quality metrics. Finally, I will point out how to design video quality metrics
using these methods and in what ways they are an improvement on existing metrics.

2.1. H.264/AVC Bitstream Feature Extraction

The H.264/AVC bitstream features are extracted from the video data by a modified
version of the H.264/AVC JM Reference Software developed by Klimpke et al. [28]. In
what follows, the M = 17 used bitstream features are outlined. In general, the features
are calculated on a per-slice basis. The H.264/AVC standard [11, 18] allows frames to
be partitioned into several slices. Since this option is not very common and not used
in the videos selected for this thesis, from here on the terms slice and frame are used
synonymously. For further details regarding the bitstream feature extraction refer to
[21, 28, 40].

Slice Features

Slice Type Each slice is either an I-, P-, or B-Slice. This information is mapped to
integer numbers as follows: I → 0, P → 1 and B → 2.

kBit This feature contains the size of the VCL-NALU in kilobits.

QPavg Each slice has an initial QP which may be altered on the macroblock level.
QPavg contains the average QP for the current slice.

∆QPavg This is the average of the differences between each macroblock’s QP and
the initial QP of the slice.
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2. Design of GOP-based Video Quality Metrics

Macroblock Features

intra Percentage of intra-macroblocks in relation to the total number of mac-
roblocks in this slice.

inter Percentage of inter-macroblocks, both predicted (P) and bi-predicted (B),
in this slice.

skip Percentage of macroblocks that have the skip flag enabled and therefore do
not contain any image data. The decoder will use the image data from the
referenced frame here.

I16×16 Percentage of intra-macroblocks with a size of 16× 16 pixels in relation to
the total number of macroblocks in this slice.

I8×8 Percentage of intra-macroblocks with a size of 8× 8 pixels in relation to the
total number of macroblocks in this slice.

I4×4 Percentage of intra-macroblocks with a size of 4× 4 pixels in relation to the
total number of macroblocks in this slice.

P16×16 Percentage of inter-macroblocks subdivided into smaller blocks. Note that
the P in P16×16 (or P8 and P4) does not only refer to predicted (P) mac-
roblocks but rather to all inter-coded macroblocks, including bi-predicted
(B) types.

P8 Percentage of macroblocks divided into 16 × 8, 8 × 16 or 8 × 8 partitions.
I.e. P8 is the total number of macroblocks minus P16×16.

P4 Percentage of 8× 8 macroblocks in the slice that were subdivided into sub-
macroblocks of the sizes 8× 4, 4× 8 or 4× 4.

Motion Vector Features

MV lmax The length of the longest motion vector in this slice. The motion vector
length MV l is calculated from the predicted coordinates MVpred and the
difference between the predicted and the actual coordinates ∆MV which
can both be read from the bitstream:

MV l =

√
(MVpred,x + ∆MVx)2 + (MVpred,y + ∆MVy)2. (2.1)

MV lavg The average length of all motion vectors (cf. equation 2.1) used in this slice.

∆MVmax The maximum difference between the predicted and the actual motion vec-
tors.

∆MVavg The mean difference between the predicted and the actual motion vectors.
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2.2. Two-Way Regression Analysis

In general, regression analysis can be used to determine the relationship between depen-
dent variables y and independent variables X. In the case of video quality prediction y
is the N × 1 column vector of the subjective quality values (the results of a subjective
test) for all N sequences. The feature extraction step discussed above results in a 1×M
feature vector x per video sequence. All feature vectors can be combined into the N ×M
feature matrix X. The relationship between the features and the subjective quality as
ground truth is represented by the M × 1 column vector b, also called weight vector :

y = Xb. (2.2)

In a first step a model has to be trained or calibrated using a set of known video se-
quences and the corresponding subjective test results. Mathematically speaking, in this
calibration step the aim is to find b. In general, X will neither be square nor have full
rank so one can only try to find a good estimate b̂ for the weight vector. There are sev-
eral different regression models available to achieve this – some of them will be discussed
below. After the calibration the model can be used to predict the quality yu of unknown
video sequences from their features Xu:

ŷu = Xub̂. (2.3)

Models like this can be called two-way models. This refers to the number of ways or
modes of the feature matrix X. This number is not to be confused with the number of
rows and columns, which is often called dimensionality. Thus, a normal matrix can also
be called a two-way array in order to distinguish the multi-way arrays that

2.2.1. Data Pre-Processing

In order to improve the performance of the following regression models some data pre-
processing is performed. Smilde et al. [42] describe the different possibilities of data pre-
processing for multi-way analysis in detail. In this thesis I use the so-called autoscaling,
which is the combination of centering across the first mode and scaling to unit standard
deviation within the second mode.

Step 1: Centering

In the centering step constant offsets are removed from X and y by subtracting the
column-means. With xmn and yn being the respective elements of X and y, this can be
written as

x̌nm = xnm − xm = xnm −
1

N

N∑
n=0

xnm (2.4a)
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2. Design of GOP-based Video Quality Metrics

and

y̌n = yn − y = yn −
1

N

N∑
n=0

yn

= yn − y0.

(2.4b)

The results are the centered feature matrix X̌ with its elements x̌mn and the centered
vector y̌. After the prediction step the subtracted offset y0 will be added to the predicted
quality value ŷ again.

Step 2: Scaling

When scaling within the second mode, every column of the centered feature matrix X̌ is
divided by the standard deviation of this column. This results in the autoscaled matrix
X̃ with the elements

x̃nm =
x̌nm√

1
N−1

∑N
n=1

(
x̌nm − 1

N

∑N
n=0 x̌nm

)2 . (2.5)

For the dependent variables y̌ no scaling step is required since in a one-way vector there
is no second mode one could scale within.
In what follows, for reasons of simplicity, I will always write X instead of X̃ and y

instead of y̌. Nevertheless, I will always mean the autoscaled versions of these input
variables.

2.2.2. Multiple Linear Regression (MLR)

The simplest way to find an estimate b̂ of the weight vector is to minimize the residual
e = y−Xb̂ through least squares regression. The least squares problem can be formulated
as following:

min
b
‖y −Xb‖2 . (2.6)

The ordinary least squares estimator gives a solution for the minimization problem:

b̂ =
(
X>X

)−1
X>y. (2.7)

This regression vector can then be used for predicting the quality ŷu of an unknown video
sequence by multiplying it with its feature vector xu. Furthermore, the offset y0 that was
subtracted in the centering step (equation (2.4b)) is added to the result again. Thus, the
quality prediction for the unknown sequence is

ŷu = y0 + xub̂. (2.8)

For further information about MLR, refer to Draper and Smith [6].
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2.2. Two-Way Regression Analysis

2.2.3. Principal Component Regression (PCR)

One problem of MLR is that all features in X are of equal importance in the regression.
By applying Principal Component Analysis (PCA) on the data matrix, redundancy can
be removed. After performing PCA it is sufficient to use the first few Principal Compo-
nents (PCs) instead of all features to express most of the variance in X. Furthermore,
the resulting regression model becomes more statistically stable when using PCA [29].
There are several different ways of calculating the PCs. In the following, I will explain
the method used by Keimel et al. [24]. Although this may not be the most efficient
method, it is quite easy to understand.
It is assumed that there are more video sequences than features (N > M) so there will

be M principal components. The feature matrix X ∈ RN×M can be decomposed using
Singular Value Decomposition (SVD) as

X = UDP>. (2.9)

The resulting matrix P ∈ RM×M is called loadings matrix and its column vectors are
eigenvectors of X>X. In a second step the score matrix T ∈ RN×M is defined as

T = UD = XP. (2.10)

From now on, TR ∈ RN×R denotes the matrix of the first R columns of T and accordingly
PR ∈ RM×R, the matrix of the first R columns of P, limiting these matrices to the R
largest principal components. With these two matrices the estimation X̂R of X based
on these principal components can be written as

X̂R = TRP
>
R. (2.11)

To determine the influence of these principal components of X on y the new regression
model is

y = TRc. (2.12)

Hereby, c is an unknown weight vector which can be estimated as ĉ by MLR analogously
to equation (2.7):

ĉ =
(
T>RTR

)−1
T>Ry. (2.13)

Finally the estimated weight vector b̂ can be calculated by the transformation of ĉ back
into the feature space:

b̂ = PRĉ. (2.14)

Then, the quality prediction of an unknown sequence works analogously to MLR and
equation (2.8).
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2. Design of GOP-based Video Quality Metrics

2.2.4. Bilinear Partial Least Squares Regression (PLS1)

One problem of PCR is that the largest R principal components may describe the variance
in X very well but do not necessarily give the best description of the variance in y.
Therefore, Partial Least Squares Regression (PLSR), as an improvement on PCR, uses
X and y simultaneously in modeling.
PLSR is the generic term for many types of regression methods – the most basic one is

Bilinear Partial Least Squares Regression (PLS1). Bilinear refers to the dimensionality
of the data matrix X and the 1 in PLS1 denotes that y is a column vector. For further
details regarding PLSR, refer to [29, 30].

Algorithm 1 Bilinear Partial Least Squares Regression (PLS1)
center X and y
X1 = X,y1 = y
r = 1

1: repeat
2: wr = X>r yr

‖X>r yr‖
3: tr = Xrwr

4: ĉr = t>r yr

t>r tr
and pf = X>r tr

t>r tr

5: Xr+1 = Xr − trp
>
r and yr+1 = yr − tr ĉr

6: r = r + 1
7: until r = R

Listing 1 shows an iterative algorithm for PLS1; a more detailed explanation can be
found at Martens and Næs [30]. The results of the algorithm are the M × R matrices
W and P with their columns wr and pr, and the R× 1 column vector ĉ. The regression
vector b̂ is then defined as

b̂ = W
(
P>W

)−1
ĉ (2.15a)

and a corresponding constant offset as

b̂0 = y −X
>
b̂. (2.15b)

The algorithm above is only one possibility to do the PLS1, but it is the simplest and
because it is sufficient for a basic understanding of the method, it is the only one shown
here. Another very common algorithm is the NIPALS-Algorithm (Nonlinear Iterative
Partial Least Squares) [29].
The regression step that results in the quality prediction ŷu of an unknown sequence

with the (centered) feature vector xu is similar to MLR and PCR; only the constant
model offset b̂0 has to be added as well:

ŷu = y0 + b̂0 + xub̂. (2.16)
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2.3. Three-Way Regression Analysis

Digital video itself can be considered as (at least) three-dimensional data. Each pixel of a
frame has two spatial coordinates u and v and a temporal coordinate t which denotes the
number of the frame it belongs to. To estimate the video quality using a data analysis
approach, some feature data needs to be extracted from the video data. When using
pixel-based features like blocking [43] or predictability as described by Keimel et al. [22],
the feature values can be calculated separately for each frame (or at most with looking
at the preceding and/or the following frame). The H.264/AVC bitstream features have
per se more temporal information since an H.264/AVC encoder uses several frames to
predict the preceding or succeeding frames.
In both cases it is common to perform some kind of temporal pooling to combine the

feature data of each frame resulting in a handy feature vector. In practice this means m
ostly averaging the features over the temporal dimension. In doing so, one naturally loses
all the temporal information, which is the crucial thing that distinguishes video from still
images. In fact, this temporal pooling has a negative effect on the quality estimation,
which is shown in [23, 24]. To overcome the negative effect of temporal pooling, multi-way
data analysis can be used. Both PCR and PLSR can be extended to process multi-way
input data.
Before discussing these extensions in detail, I will introduce the mathematical notation

for multi-way data structures as used in this thesis. As far as it is appropriate I will adopt
to the MATLAB -inspired notation used by Keimel et al. [24]. The list of symbols on
page 11 gives an overview of the variables and notations I chose. In the multidimensional
case the 1×M feature vector x becomes a M × T matrix, where T denotes the number
of frames per video sequence. Accordingly, the N × M feature matrix becomes the
N ×M × T feature array (or tensor) X. Figure 2.1 on the next page shows a graphical
representation of this feature cube X and its different slices. In general, XN :: denotes
the matrix of X with the fixed dimension n = N , and XNM : the vector with two fixed
dimensions n = N and m = M .
As in the one-way case I will use autoscaling as described in section 2.2.1 on page 21

for preprocessing the data. Centering and scaling work very similarly in the two-wway
case, so I will not repeat the description here. Again, I will write X and y instead of X̃
and y̌, meaning the autoscaled versions of the data variables.

2.3.1. Two-Dimensional Principal Component Regression (2D-PCR)

One way to include the additional dimension into the regression model is the extension
of PCR to two-way data proposed by Yang et al. [49]. This method will be referred to
as Two-Dimensional Principal Component Regression (2D-PCR). The basic idea is to
perform the PCA step on the mean of the covariance matrices of X, which describes
the average covariance of the temporal dimension. The application of 2D-PCR on video
quality metrics has first been described by Keimel et al. [24, 27].
The first step is to calculate this covariance or scatter matrix XSct ∈ RM×M from the
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Figure 2.1.: The three-way feature cube X ∈ RN×M×T and its different slices

feature array X by averaging over the covariance matrices of each temporal slice of X:

XSct =
1

T

T∑
t=1

X>::tX::t. (2.17)

The scatter matrix is now used for PCA and therefore SVD will be performed on XSct

to get the loadings matrix P ∈ RM×M :

XSct = UDP>. (2.18)

In the two-way case the score matrix T is calculated, but here the three-way scores array
T ∈ RN×M×T is defined per frontal slice as

T::t = X::tP ∀t = 0, . . . , T. (2.19)

In this and in all following equations the multiplication of a multi-way array and a matrix
(or two multi-way arrays) is given in a per-slice form. As with one dimensional PCR both
the loadings matrix and the score array are reduced to the first R principal components,
resulting in PR ∈ RM×R and TR ∈ RN×R×T . Analogously to equation 2.13 now the
estimation for the weighting factors is given by

Ĉ::t =
(
T>R,::t ·TR,::t

)+
·T>R,::t · y ∀t = 0, . . . , T. (2.20)

The transformation of Ĉ back into the original feature space results in the estimation for
the weight array B̂ ∈ RM×1×T :

B̂::t = PRĈ::t ∀t = 0, . . . , T. (2.21)

To calculate the quality prediction ŷu for an unknown sequence, the corresponding
M × T feature matrix Xu with its column-vectors xu,t has to be multiplied by the
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2.3. Three-Way Regression Analysis

corresponding slice of the weight array estimation B̂. After adding the centering offset,
this results in the vector of quality estimations per video frame ŷu ∈ RT that consists of
the elements

ŷu,t = y0 + xu,tB̂::t. (2.22)

To get an overall quality prediction ŷu ∈ R, the average of these per-frame-values is
calculated as

ŷu =
1

T

T∑
t=0

ŷu,t. (2.23)

2.3.2. Trilinear Partial Least Squares Regression (Tri-PLS1)

Trilinear Partial Least Squares Regression (Tri-PLS1) was introduced by Bro [5] as multi-
dimensional extension of PLS1. In Tri-PLS1, the components are determined depending
on weights gained along both the m and the t dimension, whereas in PLS1 the compo-
nents are only dependent on the m dimension.
Listing 2 shows an iterative algorithm that describes the decomposition of X into its

components wM and wT along both feature dimensions. Z in step 2 of the algorithm
represents the matrix of all zmt with

zmt =
N∑

n=0

ynxnmt. (2.24)

The scores tn corresponding to each sample n can then be written with the components
as

tn =
M∑

m=0

T∑
t=0

xnmtw
M
mw

T
t . (2.25)

Algorithm 2 Trilinear Partial Least Squares Regression (Tri-PLS1)
center X and y
X1 = X,y1 = y
r = 1

1: repeat
2: calculate Z
3: determine wm

r wt
r by SVD of Z

4: calculate tr. T = [t1 · · · tr]
5: br = (T>T)−1Tyr

6: Xr+1 = Xr − trwM
r (wT

r )> and yr+1 = yr −Tbr

7: r = r + 1
8: until proper description of yr

From the extracted components and scores an estimate of the T ×M weight matrix
B̂ and the model offset b̂0 can be obtained for direct regression of an 1×M × T slice of
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the feature array Xu representing the features of an unknown sequence. The elements of
the vector of the quality estimations ŷu for this unknown sequence can be written as

ŷu,t = y0 + b̂0 + xu,tb̂t. (2.26)

where xu,t denotes the t-th column vector of Xu and b̂t the t-th row vector of B̂. The
overall quality prediction ŷu can again be obtained by averaging these per-frame-values:

ŷu =
1

T

T∑
t=0

ŷu,t. (2.27)

2.4. Video Quality Prediction

All the regression models described in the previous chapter can be used to predict the
quality of unknown video sequences. As Keimel et al. [20, 21, 23, 24, 27] have described,
the metrics built on these regression methods lead to comparatively good results. In the
following, I will show how these metrics can be improved further.

2.4.1. GOP-based Temporal Quality Prediction

Since ŷu in the equations (2.22) or (2.26) already contains quality predictions for each
frame of the unknown video sequence, what comes to mind is the idea of using these
values to make a statement about the quality progression during the video sequence. To
explain why this first idea cannot lead to practical results, some deeper knowledge about
the nature of the used feature data is required. As discussed in section 2.1 on page 19,
most of the features describe either the percentages of different macroblock-types or the
statistics of the motion vectors in each frame. Both types of features do not work with
I-Frames because there are no macroblocks other than I16×16 and I4×4 and therefore also
no motion vectors. In fact, only 5 of the M = 17 features can take values different from
0 in I-Frames.
To perform an appropriate temporal quality prediction, I propose to split up each video

sequence into individual Groups of Pictures (GOPs). A GOP is a repeating sequence
of slice types in an H.264/AVC video stream. The exact structure of a GOP and its
parameters such as length or the number of reference frames can be configured during
the encoding process. For the application of quality prediction, it is only important
that the video is encoded using fixed GOP-lengths and that all videos in the training
set share the same GOP-length TG. Figure 2.2 on the facing page shows an example
of a possible GOP structure as it is used in the IT-IST dataset, which will be used
in chapter 3 to evaluate the quality prediction performance. One can clearly see the
inter-frame dependencies within the shown GOP.
Subsequently, each GOP is considered as a separate sequence of the length TG when

training the regression model. As a consequence, the video sequences can differ in their
length. For the sake of simplicity, all videos in this thesis were of equal length and
consisted of G = T

TG
GOPs. This means that instead of an N ×M feature matrix I now
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Figure 2.2.: Example for a Group of Pictures (GOP) with length TG = 15, two reference frames
and the structure IBBPBBPBBPBBPBB. These settings are also used in the videos of the IT-IST
dataset as described in section 3.2.1 on page 36.

use an NG×M matrix as input data for the regression model. In the case of three-way
models, this results in an NG×M ×TG feature array instead of one with the dimensions
N ×M ×T . Figure 2.3 shows the difference between the traditional and the GOP-based
approach by illustrating the changes of dimensionality of the feature cube.
The regression itself is not different from the way it was described above. The pre-

diction of the quality of unknown sequences now results in a quality value per GOP
and these values actually reflect the perceived progression of visual quality quite well,
as shown below. In case of three-way methods the quality prediction ŷu,g of unknown
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(a) Feature array based on complete sequences
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1 2 3 . . . G

NG

M
TG

(b) Feature array based on GOP subsets

Figure 2.3.: Changes in the dimensionality of the feature array X when moving from the
traditional feature cube based on the features of the complete video sequences to a GOP-based
approach.
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GOPs is calculated analogously to equations (2.23) and (2.27):

ŷu,g =
1

TG

TG∑
t=0

ŷu,t. (2.28)

2.4.2. Length-Independent Quality Prediction

Besides the possibility to predict the quality progression of video, a major advantage of
the extended GOP prediction model is the possibility to do quality predictions for video
sequences of different lengths with the same training set. With the conventional method,
matching dimensionality is required to evaluate the equations (2.22) or (2.26). Provided
that the GOP-length of the unknown video is equal to the TG used in the training set,
a prediction becomes possible. In practice, it is much more feasible to train prediction
models for all possible GOP lengths than for all occurring video lengths.
Figure 2.4 shows an example of a temporal quality prediction of a much longer sequence

than the ones used as training data. Although this example has not been evaluated by
subjective testing, it illustrates quite well that even the prediction of three minutes of
video with a model trained by sequences of 10 seconds each apparently results in plausible
curves.
If one is only interested in an overall quality prediction ŷu, this value can easily be

derived from the predictions on GOP level by calculating the arithmetic mean:

ŷu =
1

G

G∑
g=0

ŷu,g. (2.29)

As will be shown later, this prediction is equally significant as an estimation made by
the conventional method predicting the quality of the whole video sequence at once.
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Figure 2.4.: Temporal quality prediction of the first three minutes taken from an episode of a
popular TV-series encoded with three different bit rates using H.264/AVC. The 2D-PCR model
was trained with the IT-IST dataset. Dimensions in the training step were N = 48,M = 17, G =
17, TG = 15 and dimensions in the prediction step: N = 3,M = 17, G = 500, TG = 15.
The break-in around second 100 can be assumed to be due to the opening credits at this point.
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2.5. Data Post-Processing: Sigmoid Correction

Regardless of which of the quality metrics described above is used, after the prediction
of a quality value the last step is to apply the so-called Sigmoid Correction as described
by Keimel et al. [22]. Hereby, the nonlinear correction function

ŷsc =
a

1 + e−
ŷ−b
c

(2.30)

is applied to the prediction values with the parameters set to a = 1.0, b = 0.5, c = 0.2.
Figure 2.5 shows a plot of this function. The purpose of this post-processing is to adapt
the prediction values to the nature of subjective MOS data. The correction function is
nearly linear over a wide range, but cuts the values near 0 and 1 since these extrema are
not likely to occur in a real test.
If not stated otherwise, all prediction values used in this thesis – especially all values

used for evaluation in chapter 3 – have been corrected with the Sigmoid Correction.

ŷ

ŷsc

0 0.5 1
0

0.5

1

Figure 2.5.: Sigmoid Correction Function
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3. Evaluation of GOP-based Video Quality
Metrics

In order to verify the improvements on the video quality metrics described in the previous
chapter, their prediction performance needs to be evaluated. In this chapter I will first
outline the mathematical performance measures and methodology used for the evaluation.
Then, I will compare the prediction performance of the length-independent metric to a
corresponding length-dependent metric. Finally, I will discuss the evaluation of the
temporal quality prediction. This requires a new subjective quality assessment method,
which I will describe before I analyze the evaluation results.
All quality metrics and all evaluation functions were implemented in MATLAB using

the N-Way Toolbox by Andersson and Bro [2] for all PLSR-related code.

3.1. Evaluation Methodology

3.1.1. Statistical Performance Measures

The prediction performance of video quality metrics is measured by statistical functions,
namely Pearson’s correlation coefficient, the Spearman rank correlation coefficient, and
the Root Mean Square Error (RMSE), which will be explained in the following.

Pearson’s correlation coefficient

Pearson’s correlation coefficient measures the linear dependence between two variables.
The coefficient r between n samples of the variables a and b is defined as

r =
σab
σaσb

=

∑n
i=0(ai − a)(bi − b)√∑n

i=0 (ai − a)2
√∑n

i=0

(
bi − b

)2 (3.1)

where σa and σb denote the sample standard deviation of a and b, and σab the covari-
ance of a and b. The correlation coefficient can take values between −1 and +1. The
correlation between subjective test results and the prediction of a quality metric is an
important benchmark: The nearer r is to +1, the better the prediction performance is.

Spearman’s Rank Correlation Coefficient

Spearman’s correlation coefficient ρ is a measure of how well a monotonic function de-
scribes the relationship between two variables. If used on video quality metrics, a corre-
lation of ρ = 1 means that the evaluated metric can order all sequences correctly by their
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subjective quality. This metric can give perfect answers to the question which video of
two has better quality but may not predict perfect absolute quality ratings.
Mathematically, Spearman’s rank correlation is the Pearson correlation coefficient be-

tween the ranks of the samples of two variables a and b. Simplified, the rank is the
position of the i-th sample in a sorted table of all values.

Root Mean Square Error (RMSE)

The RMSE of n predictions â of the variable a is defined as

RMSE =

√√√√ 1

n

n∑
i=0

(ai − âi)2 (3.2)

and can be used as a measure for the prediction accuracy. Clearly, in this case, the best
value is 0.
In contrast to the correlation measures described above, the RMSE is scale-dependent.

In this thesis all quality values are normalized to 1 which has to be considered when
comparing the RMSE-values to those from other publications.

Scatter Plots

Since the three numerical measures described above cannot explain all dependencies
between two variables, a so-called scatter plot can be helpful. Especially nonlinear re-
lationships that are not taken into account by correlation measures become visible in a
scatter plot. Therefore, I will present scatter plots with all correlation values.

3.1.2. Cross Validation

In the evaluation of data analysis methods it is important not to use the same data
for the training and the validation. Otherwise, the results would be over-optimistic
and misleading. Ideally, one would use two different datasets for the training and the
validation. Since the size and number of suitable datasets are limited and it is very time-
consuming to create new datasets, it is not affordable to use only one half of a dataset
for the training and the other for validation.
In order to avoid this problem, I performed cross validation. This means the model

is trained with the data of the complete dataset except one sequence and all that share
the same content. Afterwards, the quality of the sequences that had been left out is
predicted using the resulting model. In doing so, I can obtain quality predictions for all
sequences without using the same data for training and validation and making use of the
whole dataset at the same time. For a more theoretical view on cross validation refer to
Martens and Martens [29].

3.1.3. Full-Reference Metrics for Comparison

Along with the results of the evaluated quality metrics, I provide the prediction results
of two well-known full-reference metrics.
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Peak Signal-to-Noise Ratio (PSNR)

The Signal-to-Noise Ratio (SNR) is a very common measure – especially in telecommuni-
cations engineering – for the quality of a noisy signal. Since an image can be interpreted
as a signal, the SNR can be applied to image data as well. The PSNR is the adoption of
this concept to image processing.
In order to obtain the PSNR between an image I and its coded version Ic with dimen-

sions U, V , first the Mean Square Error (MSE) of both images is calculated as

MSE =
1

UV

U∑
u=0

V∑
v=0

[I(u, v)− Ic(u, v)]2 . (3.3)

The PSNR is then the logarithmic ratio of the RMSE and the maximum pixel value
MAXI of the image I:

PSNR = 10 · log10
MAX I√
MSE

dB. (3.4)

With 8-bit video data the maximum pixel value is 28−1 = 255. The formulas above only
apply to grayscale images. All color data used in this thesis was converted to YCrCb
color space and the PSNR is only applied to the luma channel. The PSNR is calculated
separately for each frame of the video and the average is taken afterwards.
The correlation between PSNR and the perceived quality is not very high, which makes

PSNR not the best choice as a video quality metric. There are examples of images with
very different PSNR without any noticeable quality difference and the other way round
[45, 47]. But as the PSNR is rather widespread and often used in the development of
codecs, I will use it for comparison.

Structural Similarity (SSIM)

To overcome the shortcomings of PSNR, Wang et al. [44] proposed the so-called Struc-
tural Similarity Index (SSIM) as a new metric for image quality. The underlying as-
sumption is that the HVS is highly adapted to extracting structural information from a
scene.
The SSIM is calculated on small windows of an image. The index of two windows x

and y is defined as

SSIM (x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2x + µ2y + C1)(σ2x + σ2y + C2)
(3.5)

where µx and µy are the averages, σ2x and σ2y the variances, and σxy the covariance of x
and y. The constants C1 and C2 are set to C1 = (0.01 · 255)2 and C2 = (0.03 · 255)2 by
default for 8-bit data. For further details, refer to [44]. As with the PSNR, the SSIM
index is calculated only on the luma channel and separately for each video frame.
In general, the SSIM correlates much better to subjective quality than PSNR. There-

fore, I consider it the reference metric whose results have to be exceeded with the proposed
no-reference metrics.
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3. Evaluation of GOP-based Video Quality Metrics

3.2. Evaluation of Length-Independent Quality Prediction

In order to verify the validity of the length-independent quality prediction as described
in section 2.4.2, I compare its results to the prediction results of the conventional metric
that predicts the quality of a complete sequence at once and some other metrics.

3.2.1. Datasets Used for Evaluation

Since the length-independent quality prediction can easily be validated on existing data
without conducting subjective tests, I will apply the metric on three different datasets
which are described in what follows.

IT-IST CIF Dataset

The first dataset is provided by IT-IST and has been used first by Brandão and Queluz
[4]. The videos in this dataset were encoded with H.264/AVC and have CIF resolution
(352 × 288 pixels). The frame rate is 30 fps except for the sequence Australia, which
has 25 fps. From the the available sequences I chose 4 different rate points in the range
from 32 kbit/s to 2048 kbit/s for each of the 12 different video sequences in the dataset.
Table 3.1 on the facing page shows the complete list of all N = 48 video sequences. The
sequences had been encoded with a fixed GOP-length of TG = 15 frames. I removed the
first GOP, as it consists of only 13 frames, and also the last few frames because the last
GOP is incomplete. In total there are T = 240 frames per sequence and G = 16 GOPs
per sequence which gives NG = 768 subsets of video to train the model with.
IT-IST provides the results of subjective quality assessment for all video sequences in

their dataset. The test was conducted with 42 participants using Degradation Category
Rating (DCR) as described in ITU-T Recommendation P.910 [15]. It is assumed that the
Mean Opinion Score (MOS) values are equally valid for the slightly shortened sequences
I use here.
The biggest advantage of this dataset is the fact that it consists of many different

sequences. When using cross validation, the training dataset is still quite large and still
covers very different content types. The dataset also covers a broad range of visual
quality from high data rates where almost no distortions are noticeable to low quality
where it is hard to recognize any of the video content. Both factors make the dataset
well suited for quality metrics based on data analysis.

TUM 1080p25 High Definition Dataset

The TUM 1080p25 HD dataset consists of the 4 different video sequences CrowdRun,
ParkJoy, IntoTree and OldTownCross from the SVT multi format test set [9]. As de-
scribed by Keimel et al. [26], the 25 fps version has been generated from the original 50
fps material by dropping every second frame. All sequences are in 1080p HD resolution
(1920× 1080 pixels).
The dataset was originally designed to compare different coding technologies. There-

fore, all sequences were encoded with H.264/AVC using two different sets of encoder
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Table 3.1.: Used subset of the IT-IST test set with MOS values from [4]

Sequence kBit/s MOS First Frame

Australia

32 0.32
64 0.61
128 0.85
256 0.99

Citya

128 0.56
200 0.65
256 0.80
512 0.98

Coastguard

64 0.22
128 0.55
256 0.85
512 0.92

Containerb
64 0.67
128 0.70
256 0.95
512 0.99

Crewb

128 0.06
200 0.26
400 0.69
1024 0.99

Footballa
256 0.19
512 0.58
1024 0.74
2048 0.99

Sequence kBit/s MOS First Frame

Foremana

64 0.01
128 0.49
256 0.77
512 0.98

Mobileb
64 0.08
128 0.12
256 0.73
512 0.92

Silentb
64 0.14
200 0.69
400 0.89
1024 1.00

Stephanb

128 0.01
256 0.39
512 0.84
1024 0.98

Tablea
64 0.05
128 0.47
256 0.89
512 0.98

Tempetea
128 0.39
200 0.63
400 0.86
750 0.99

a Used also in the test phase of the evaluation of temporal quality prediction (cf. chapter 3.3)
b Used also in the training phase of the evaluation of temporal quality prediction

parameters at four different rate points each. There are some more sequences that were
encoded using the wavelet-based Dirac codec which are not suitable for H.264/AVC fea-
ture extraction and therefore not used in this thesis. Hence, the used dataset consisted
of N = 32 sequences in total.
One problem of this dataset is that the two encoder settings HC (high complexity) and

LC (low complexity) result in different GOP lengths. The HC sequences have 13 frames
per GOP, the LC sequences only 12. As a workaround I discarded the feature data of
the last frame (a B-frame) in each GOP of the HC sequences. The result are feature
cubes with TG = 12 frontal slices per GOP. This is obviously not the optimal solution,
but can also be seen as an example of how to master this or similar challenges in real-life
applications. The good results discussed later will justify this workaround.
The original sequences consist of 250 frames. After removing the first GOP of the LC

sequences (which is only 10 frames long), the last frame of each GOP in the HC sequences
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and the last incomplete GOP in all sequences, T = 228 frames or G = 19 GOPs per
sequence remain. In total there are NG = 608 GOPs available for training the regression
model.
The subjective data of the dataset were gained in a subjective test using the Double

Stimulus Unknown Reference (DSUR) method. This method is a variation of the stan-
dard Double Stimulus Continuos Quality Scale (DSCQS) test method [12] and has been
proposed by Baroncini [3]. Table 3.2 gives an overview of the used video sequences and
the corresponding MOS values. There another disadvantage of this dataset becomes vis-
ible: it does not cover low visual quality well. All HC sequences have an MOS above 0.5
and even 75% of the LC sequences have an MOS in the upper half of the scale. The se-
quence OldTownCross is the most drastic example – the worst subjective quality that has
been measured is 0.69. Therefore, one cannot expect the same prediction performance
as with the IT-IST dataset.

Table 3.2.: TUM 1080p25 Dataset

Sequence MBit/s MOS HC MOS LC First Frame

CrowdRun

8.4 0.51 0.26
12.7 0.69 0.56
19.2 0.83 0.62
28.5 0.93 0.78

ParkJoy

9.0 0.68 0.19
12.6 0.75 0.21
20.1 0.89 0.54
30.9 0.96 0.84

IntoTree

5.7 0.73 0.43
10.4 0.86 0.62
13.1 0.92 0.63
17.1 0.93 0.62

OldTownCross

5.4 0.89 0.69
9.6 0.90 0.78
13.7 0.94 0.79
19.0 0.96 0.82

TUM 1080p50 High Definition Dataset

The 5 sequences of the third dataset are also taken from the SVT multi format test set
[9]. Both datasets share the sequence CrowdRun, but the 1080p50 dataset additionally
contains the sequences TreeTilt, PrincessRun, DanceKiss and Flag/Shoot. The dataset
with 1080p HD resolution (1920 × 1080 pixels) has been created by Redl et al. [37] for
determining the influence of different viewing devices on the perceived visual quality and
is also described in [26]. All sequences have the full 50 fps of the original footage.
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3.2. Evaluation of Length-Independent Quality Prediction

The sequences were encoded with H.264/AVC at four different rate points. Table 3.3
shows the resulting sequences together with their bit rates and the MOS value. For the
subjective evaluation the Single Stimulus MultiMedia (SSMM) method, a variation of
the standard SSIS test method proposed by Oelbaum et al. [35], had been used. The
encoding of the sequences in the dataset resulted in GOPs of the fixed length TG = 24.
As in the other datasets, I had to remove the first GOP, because it contained only 19
frames. The last and incomplete GOP was also removed so that G = 19 GOPs remained.
In total, every sequence still had T = 456 frames.
In contrast to the TUM 1080p25 dataset, this dataset covers the low end of the quality

range much better. Nevertheless, the main drawback of the TUM 1080p50 dataset is its
small total number of N = 20 sequences or NG = 380 GOPs: With cross validation only
16 sequences are used in the training of the regression model.

Table 3.3.: TUM 1080p50 Dataset

Sequence MBit/s MOS First Frame

CrowdRun

8 0.19
20 0.59
30 0.80
40 0.81

TreeTilt

2 0.30
3 0.56
6 0.89
10 0.89

PrincessRun

8 0.19
20 0.56
30 0.74
40 0.70

DanceKiss

2 0.29
3 0.54
6 0.82
10 0.81

Flag/Shoot

2 0.25
3 0.55
6 0.80
10 0.77

Summary

After discussing the three datasets, it is expected that the IT-IST dataset will show the
best performance. But it is still worthwhile looking at the results for the other data sets
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as they will show the limits of the data-analysis-based quality metrics and cover the more
relevant HD resolution. Table 3.4 summarizes the most important parameters of the tree
datasets.

Table 3.4.: Parameters of the used datasets

Dataset fps Resolution N TG G T NG

IT-IST 30/25 352× 288 48 15 16 240 768
TUM 1080p25 25 1920× 1080 32 12 19 228 608
TUM 1080p50 50 1920× 1080 20 24 19 456 380

3.2.2. Performance Evaluation

Compared Quality Metrics

In order to validate the GOP-based approach for length-independent quality prediction,
I compare the results of the proposed metric to the corresponding method based on the
training with the complete sequences. For the datasets IT-IST and TUM 1080p25 I used
metrics based on Tri-PLS1, since this regression method provides the best results in these
cases. For the TUM 1080p50 set, a 2D-PCR model shows the best results. For the sake
of convenience, I call the GOP-based metrics Tri-PLS1-GOP and 2D-PCR-GOP.
The number of PLSR factors or PCR components R is given in the tables with the

results. In general, I chose the R that lead to the best prediction performance for the
complete-sequence-metric and also used the same number for the GOP metric.
Keimel et al. [24, p. 48] claim that “more dimensions are really better”. To support

this statement, I also applied the corresponding two-way metrics after temporally pooling
the feature data. For the datasets IT-IST and TUM 1080p25 the regression method is
PLS1, for the TUM 1080p50 dataset simple PCR.
For further comparison, the results for the full-reference metrics PSNR and SSIM as

discussed in section 3.1.3 on page 34 are provided along with the metrics described above.
The correlation and RMSE values for all datasets and all metrics are shown in Table 3.5
on the next page. All corresponding scatter plots can be found in appendix A.2.1 on
page 63.

Discussion of the Results

First of all, the correlation values increase with all datasets when using the three-way
model instead of the two-way model. The component number R decreases or at least
remains the same, which indicates that the three-way models are able to describe the
variance of quality more accurately. So yes, “more dimensions are really better” [24,
p. 48].
When looking at the GOP-based metrics, one notices that both the Pearson and the

Spearman coefficients suggest a decrease in prediction performance compared to the
models trained with the complete sequences. The same statement can be made when
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3.2. Evaluation of Length-Independent Quality Prediction

Table 3.5.: Performance measures of the different quality metrics applied on the three datasets

(a) IT-IST

R Pearson Spearman RMSE

PSNR 0.723 0.777
SSIM 0.850 0.871

PLS1 3 0.935 0.919 0.117

Tri-PLS1 2 0.951 0.962 0.108
Tri-PLS1-GOP 2 0.947 0.955 0.125

(b) TUM 1080p25

R Pearson Spearman RMSE

PSNR 0.738 0.717
SSIM 0.859 0.805

PLS1 5 0.849 0.816 0.113

Tri-PLS1 5 0.910 0.866 0.092
Tri-PLS1-GOP 5 0.900 0.849 0.092

(c) TUM 1080p50

R Pearson Spearman RMSE

PSNR 0.468 0.391
SSIM 0.848 0.908

PCR 7 0.692 0.556 0.200

2D-PCR 3 0.888 0.782 0.137
2D-PCR-GOP 3 0.844 0.746 0.149

looking at the RMSE. With the IT-IST and TUM 1080p25 datasets, the difference of
the correlations is small and generally the correlation is on a very high level with both
methods. This is also illustrated by the two scatter plots in Figure 3.1 on the next page.
At least at first glance, there is no visible qualitative difference between the two metrics.
Thus, in the cases of these two datasets, one can hardly speak of a real disadvantage of
the GOP-method – especially when considering the advantage of length-independence.
In the TUM 1080p50 data, the drop of the correlation values is clearer. However,

as mentioned above, of the three this dataset is probably the most challenging for data
analysis metrics. Nonetheless, the performance is still much better than with the two-way
metric PCR, so that one cannot take this result as a counterargument against GOP-based
metrics in general.
In the IT-IST and TUM 1080p25 datasets, both three-way metrics clearly outperform
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(a) Tri-PLS1
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(b) Tri-PLS1-GOP

Figure 3.1.: Scatter plots of the quality prediction of the metrics Tri-PLS1 and Tri-PLS1-GOP
for the IT-IST dataset

the full-reference metrics PSNR and SSIM, and the two-way metrics are at least on the
same level as the SSIM. For the TUM 1080p50 dataset, the PCR metric as well as the
2D-PCR-GOP metric are outperformed by the SSIM index. Although the 2D-PCR has a
higher Pearson correlation and a better RMSE, the rank correlation of the SSIM is much
higher. This can again be explained with the mentioned low number of sequences in the
dataset. The SSIM as a full-reference metric does not depend on the size of a training
set and although its results are on about the same level as with the other datasets, it
can outperform the data analysis metrics that suffer from the little amount of training
data here.
A further conclusion of the results above is that generally PLSR-based metrics perform

better than the ones based on simple PCR. As mentioned above, I chose the best
regression method for each dataset and with two of the three datasets this were the
PLSR metrics.

Conclusion

To summarize the discussion above, I can say that the proposed GOP-based quality
metrics lead to very good results compared to other data analysis methods. Especially
Tri-PLS1 seems to be an appropriate regression method to achieve the best performance.
But as with all data analysis approaches it is important to have a big set of training data
that covers a broad range of image contents as well as quality levels.
Figure 3.2 on the facing page displays an example for the quality prediction of a video

sequence from the IT-IST dataset. It shows how close the quality predictions of the two
three-way metrics are to the true MOS.
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Figure 3.2.: Examples for predictions of the different metrics on the video sequence Stephan
from the IT-IST dataset at 265 kbit/s

3.3. Evaluation of Temporal Quality Prediction

As with the length-independent metrics, subjective test results are required in order to
examine and evaluate the temporal prediction performance of the metrics as discussed
above. Since there is currently no data available that would provide a suitable subjective
and time-continuos quality measurement, I had to carry out my own test. This required
the design of a new subjective test method for determining the temporal progression of
subjective video quality of short video sequences, which will be explained in the following.

3.3.1. Design of the Subjective Test

Quality Assessment Method

Since there are no established methods for the subjective assessment of temporal quality
progression in short video sequences (cf. section 1.1.2 on page 14), I had to create a
new assessment method. The SSCQE method as described in ITU-R Recommendation
BT.500 [12] is only suitable for much longer sequences and cannot be adapted to sequences
this short: The average observer would not be able to follow the quick changes in visual
quality with his or her finger.
Therefore, I divided the task into three separate questions. The first one asked the par-

ticipant about his or her overall quality impression and is answered on a continuos scale
using an on-screen slider. The scale is similar to the ITU-R Rec. BT.500 SSCQE-scale.
The second question asked the observer to rate the strength of the quality fluctuation
during the video sequence. This question is answered on a continuos scale as well. Un-
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Bad

Poor

Fair

Good

Excellent

(a) Rating scale for the first question on
the overall quality impression (labeled ac-
cording to ITU-R Rec. BT.500)

konstante Qualität

leichte Änderungen

deutliche Änderung

starke Änderungen

(b) Rating scale for the second question on
the quality fluctuation strength (labeled in
German for better comprehensibility)

Figure 3.3.: Rating scales for temporal quality assessment

like the first standardized scale this was labeled in German because all test subjects were
German native speakers. Both scales can be seen in Figure 3.3.
In a third question the test subjects were asked to categorize the quality progression

during the sequence. Each of the available six categories was represented by the small
symbolic plot as shown in the right column of Table 3.6 on page 48. For the design
of the first five categories, polynomial functions with increasing degrees from 0 to 2
were chosen. The sixth category is meant for all sequences with fast but noticeable
quality fluctuations that do not fit into the first five categories. The answers to the three
questions can then be used to reconstruct the perceived quality progression as it will be
described in section 3.3.2 on page 46.
The advantage of this assessment method is that the observer can make a statement

about the temporal quality progression even for short video sequences. But this comes
with the compromise that not all possible quality patterns can be represented due to
the limitation to the six available categories. The longer the sequences get, the more
complex the quality progression pattern can become and the more crucial this limitation
becomes. In general, more patterns would allow a better representation of the observer’s
perception, but would also be much more demanding and time-consuming for the test
subject. The six patterns appeared to be a reasonable compromise and led to acceptable
results for the video sequences of the dataset.
Since it is difficult to focus on all three questions at the same time while watching

the video sequence, the observer is allowed to watch the video more than once. Instead
of displaying each sequence three times or even more often to cover all questions, a
replay-button was made available and the participants were told that they could use this
button as often as required. To avoid any further complexity, a single stimulus method
was chosen.
Three questions instead of one per sequence make the training phase before the actual

test even more important than with traditional assessment methods. Especially the
second and the third question need to be explained thoroughly, in order to make sure that
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all participants have an equal understanding of the rating scales. Although I performed
the training carefully, the variance of the answers of the second question was quite high.
This will be discussed in more detail later.

Test Conditions

The test was conducted in the video laboratory of the Institute for Data Processing (LDV)
at the Technische Universität München (TUM), which is compliant to ITU-R Recom-
mendation BT.500 [12]. The videos were displayed using a Sony BVM-L230 reference
display (23”) at a visible height of 8cm and with a viewing distance of about 60cm.
S = 21 persons with ages in the range from 14 to 28 participated in the test, most of
them were university students and non-experts in video processing.

(a) Video Laboratory at LDV

Wie gut ist die visuelle Qualität des Videos insgesamt?

Wie stark ändert sich die visuelle Qualität im Zeitverlauf? Wie ist der grobe Verlauf der visuellen Qualität des Videos?

     

     

Step 4 of 30

Next

Bad

Poor

Fair

Good

Excellent

konstante Qualität

leichte Änderungen

deutliche Änderung

starke Änderungen

(b) Screenshot QualityCrowd 2

Figure 3.4.: Photography of the test setting in the LDV video lab and a screenshot of the
QualityCrowd 2 software from the conducted test

The software framework QualityCrowd 2 was used to provide an interactive user inter-
face for the test. QualityCrowd 2 is a web-based tool which allows the test operator to
compile a test batch. This batch defines all displayed texts and the order of the videos.
The test runs in a web-browser and therefore the videos are played back by Adobe Flash
Player from lossless compressed files. Figure 3.4 shows a typical screen from the con-
ducted test. Since the software did not support the assessment method described above,
I modified it in order to provide the required functionality. For further information
regarding QualityCrowd see Horch et al. [10] and Keimel et al. [25].

Description of the Test

The QualityCrowd 2 software organizes a test in separate steps. The conducted test
consisted of 30 steps which are described in the following.
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Step 1, Welcome Screen This screen was shown during the arrival and welcoming of the
test person.

Steps 2–3, Training Phase I In this phase two videos were presented, one with very bad
and one with excellent quality, so the test person could learn how to use rating
slider and video player and got to know the expected quality range.

Steps 4–6, Training Phase II In these steps the two additional questions were introduced
and explained. The three videos demonstrated three different quality patterns and
different grades of fluctuation strength. The operator told the participants about
the possibility to watch the video more than once and that they could and should
use the complete rating scale.

Step 7, Pause Time for open questions before the actual test started and the operator
left the test room.

Steps 8–9, Stabilization Phase To further improve the participant’s interpretation of the
rating scales, two videos were displayed that were be repeated in the test phase.
The ratings of this phase are discarded and not included in the evaluation.

Steps 10–29, Test Phase Each video sequence of the test set was displayed once and rated
by the test person. The sequences were shown in such an order that two successive
videos never shared the same content or bit rate.

Step 30, Final Screen The test operator thanked the participant and said goodbye.

On average the test took 15.9 minutes – 4.1 minutes for the training phase, 1.2 minutes
for the stabilization, and 10.7 minutes for the test phase.

3.3.2. Reconstruction of Temporal Quality Progression

Reconstruction per Test Subject

To evaluate the temporal quality progression, each of the six different patterns the test
subjects had to choose from (third question), is modeled using a simple function. Ta-
ble 3.6 on page 48 shows the patterns and the assigned reconstruction functions. The
quality value of the g-th GOP according to the rating of the s-th test subject qgs is
calculated in dependency of the overall quality rating qs (answer to the first question)
and the degree of quality fluctuation fs (answer to the second question). The functions
have been designed with respect to two conditions:

• The distance between the highest and lowest value qgs equals the fluctuation
strength fs:

max(qgs)−min(qgs) = fs. (3.6)

• The mean of all qgs per sequence equals the overall quality rating qs:

1

G

G∑
g=0

qgs = qs. (3.7)
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Figure 3.5.: Examples of the reconstruction functions of pattern 2 and pattern 4 as shown in
Table 3.6 on the next page

These design criteria are visualized exemplarily in Figure 3.5 for two patterns. G
denotes the number of GOPs of the current video sequence and S the number of test
subjects.

Reconstruction per Video Sequence

After that, the reconstructed curves for each observer are combined by calculating the
arithmetic mean qg of all qgs:

qg =
1

S

S∑
s=0

qgs. (3.8)

The quality curves qg are then the values that are later compared to their corresponding
predictions ŷg. Figure 3.6 on page 49 shows an example of how the reconstructions per
subject form the main reconstruction.

3.3.3. Choice of Video Sequences

The most important requirement for suitable video sequences were clearly visible quality
changes over time. I ran the temporal quality prediction on all three datasets described
in 3.2.1 on page 36 and compared the variance in the quality progression per sequence.
Since the IT-IST dataset clearly showed the most fluctuation over time, this dataset was
chosen for the evaluation of the temporal quality prediction.
One has to admit that the CIF-resolution of the IT-IST dataset is far from state-of-the-

art by now, but the two High Definition (HD) datasets TUM 1080p25 and TUM 1080p50
did not fulfill the requirement of visible quality fluctuation. Presumably the main reason
for this is the comparatively high quality of all sequences in these datasets. It would
have been possible to create a new dataset with sequences that show some visible quality
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Table 3.6.: Quality Patterns and Reconstruction Functions

Pattern Reconstruction Function Icon

1 constant qgs = qs

2 linear increasing qgs = qs − fs
2 + fs

G · g

3 linear decreasing qgs = qs + fs
2 −

fs
G · g

4 parabola, open at top qgs = 4fs
G2 · g2 − 4fs

G · g + qs + 2fs
3

5 parabola, open at bottom qgs = −4fs
G2 · g2 + 4fs

G · g + qs − 2fs
3

6 oscillating qgs = fs
2 cos(g) + qs

changes, but due to the expected high expenditure of this option I decided to work with
the tried and tested IT-IST dataset. It should still be possible to prove the basic concept
of GOP-based video quality prediction.
Since the full amount of 48 sequences would have been too much for a single subjective

test, I selected a subset of the full dataset consisting of the five sequences City, Football,
Foreman, Table and Tempete. In addition, a broad range of both MOS values and
expected quality fluctuation strengths was covered. This led to the number of N = 20
video sequences with in total NG = 320 GOPs. To avoid the negative effects of a
decreased number of training sequences, the complete set of 48 sequences was used to
train the regression models.

3.3.4. Results of the Subjective Test

In order to discuss the results of the subjective test, I will deal with the three questions
of the test and the corresponding answers separately. Section 3.3.5 on page 52 will then
discuss the results of the curve reconstruction.
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Figure 3.6.: Example for the reconstruction of temporal quality curves from the test answers.
The green lines are the results of the reconstruction per test subject (cf. section 3.3.2), the blue
line is the average of the green curves. The video sequence used in this figure is Football from
the IT-IST dataset at the rate point 256 kBit/s

First Question: Overall Quality Impression

The validity of the subjective test can easily be checked by calculating the so-called inter-
lab correlation. Therefore, I compared my test results to those from the test by Brandão
and Queluz [4]. Both subjective tests had similar test conditions, but with DCR [15] they
used a double stimulus method. Nevertheless, both the correlation coefficients and the
RMSE as shown in Table 3.7 indicate a highly significant similarity between the results
of both tests. The corresponding scatter plot is shown in Figure 3.7 on the following
page. The complete list of the raw subjective data is shown in the appendix in Table A.1
on page 60.
This high inter-lab correlation is important, as I will compare the prediction results

Table 3.7.: Inter-lab correlation of the MOS calculated from the answers to the first question of
my subjective test and the corresponding MOS values from IT-IST by Brandão and Queluz [4].

Sequence Pearson Spearman RMSE

City 0.970 1.000 0.112
Football 0.996 1.000 0.091
Foreman 0.997 1.000 0.098
Table 0.997 1.000 0.144
Tempete 0.998 1.000 0.072

all 0.976 0.959 0.106
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3. Evaluation of GOP-based Video Quality Metrics

of a regression model that has been trained with the subjective values from Brandão
and Queluz [4] to the reconstructed curves using my subjective results. Furthermore,
it shows that at least the first question of my test provides the high-quality results
that are expected from a subjective laboratory test. This indicates that the the two
additional questions and the self-operation of the test do not distract the observers from
the judgement of the overall video quality.
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Figure 3.7.: Scatter plot corresponding to the values shown in Table 3.7

Second Question: Quality Fluctuation Strength

The answers to the second question cannot be validated easily. This is because there is
no similar subjective data I could compare my results with. Consequently, I can only
consider how plausible the ratings as shown in Table A.2 on page 61 are.
The bars in Figure 3.8 on the next page show the averages of the fluctuation ratings

per sequence. Several things attract attention: First of all, the fluctuation strength seems
to be strongly correlated with the subjective quality (Pearson correlation coefficient of
−0.79). This is no surprise, as the better quality levels naturally show less quality
fluctuations. Furthermore, the highest bit rates are always considered to have very little
fluctuations. These things make the answer data to this question very plausible.
On the other hand, the plot shows that the statistical dispersion of the answers is fairly

high. Presumably this is due to the complexity of the question. Despite the fact that the
rating scale was explained in detail to each participant, it is still much less trivial than
just asking for an overall quality impression. While watching the test subjects, I noticed
that most of them started a test step by answering the first and third question. Then
they often watched the video again and tried to rate the fluctuation strength (second
question). Most observers made a less confident impression when moving the slider for
this question than when rating the overall quality. I think at this point it becomes clear
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Figure 3.8.: Mean and standard deviation of the answers to the second question about the
strength of the quality fluctuation for the 5 sequences in the IT-IST subset. Each bar corresponds
to one of 4 different rate points from the lowest to the highest bit rates.

that the test method I chose is probably the maximum complexity one can ask of a
non-expert test participant. Since the capacity of the human working-memory is limited
(cf. Miller [33]), it is not possible to concentrate on several different things at once.
Nevertheless, since the average results are plausible, the results seem to be useful for the
intended purpose of reconstructing the quality progression.

Third Question: Quality Progression Pattern

The third question poses the same problem as the second one. There is no data available
for comparison, so once again I will focus on the plausibility of the results. The complete
set of answer data can again be found in the appendix in Table A.2 on page 61.
Since this question is not based on a rating scale that results in continuos values, statis-

tical methods are not helpful when evaluating the data. The question can be considered
rather a choice than a rating on a scale and therefore I calculated the percentages of the
options that were chosen for each sequence. Table 3.8 on the next page shows the pattern
selected most often per sequence and the corresponding percentage. One can see in this
table that in 17 out of 20 cases more than half of all observers agreed on one pattern –
15 times it were even more than two thirds. This indicates that the six options that were
provided were a reasonable choice, as apparently the test subjects were able to express
their perception quite well with the help of the six patterns.
At first, it seems to be a good idea to discard all votes that do not agree with the

majority, but actually I rather think it is important to take them into account as well.
Although a particular observer might not agree with the most common voting, his or
her perception might still be valuable for the curve reconstruction. If, for example,
the real quality progression is similar to the addition of two patterns, some observers
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3. Evaluation of GOP-based Video Quality Metrics

Table 3.8.: Percentages of the answer data of the third question about the quality pattern. Rate
point (RP) 1 corresponds to the lowest bit rate, RP 4 to the highest.

Sequence RP Majority

City

1 71.4 4.8 23.8 1
2 66.7 14.3 4.8 14.3 1
3 66.7 9.5 4.8 19.0 1
4 100.0 1

Football

1 9.5 81.0 9.5 4
2 4.8 9.5 66.7 9.5 9.5 4
3 23.8 9.5 66.7 4
4 76.2 4.8 19.0 1

Foreman

1 19.0 76.2 4.8 3
2 14.3 9.5 14.3 42.9 4.8 14.3 4
3 47.6 4.8 14.3 28.6 4.8 1
4 90.5 4.8 4.8 1

Table

1 33.3 33.3 4.8 28.6 1/3
2 4.8 57.1 23.8 14.3 2
3 71.4 9.5 9.5 9.5 1
4 81.0 9.5 9.5 1

Tempete

1 4.8 4.8 90.5 6
2 33.3 4.8 4.8 57.1 6
3 66.7 4.8 14.3 14.3 1
4 90.5 4.8 4.8 1

all sequences 48.3 7.9 9.0 18.3 0.7 15.7

might vote for one of the two patterns and the remaining observers for the other. In
the reconstruction step, the two options are then combined and a much more accurate
reconstruction will be the result.

3.3.5. Results of the Temporal Quality Prediction

As discussed in the section about length-independent quality prediction, I chose the re-
gression method and the number of used factors R that results in the best prediction
performance. For the evaluation of the temporal quality prediction Tri-PLS1-based pre-
diction with R = 3 factors was used.
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Figure 3.9.: Quality curve reconstructions and predictions of all rate points of the sequence
Football

Quality Curve Reconstruction

The reconstruction of the quality curves from the test results was done as described
in section 3.3.2 on page 46. The plots of the resulting curves and the corresponding
predictions are shown in appendix A.3 on page 67.
Figure 3.9 shows the quality progression curves for the sequences with the content

Football as an example. This sequence is the most interesting as it contains the strongest
quality fluctuation strength of the whole dataset. One can see that the reconstructed
and the predicted curves do look quite similar but the prediction contains more details.
Obviously, the reconstructed curves are not able to represent the exact shape of the
quality progression as it is predicted; more complex curve shapes are not possible because
of the limitation to the six patterns. In addition, it is arguable whether a human observer
could resolve such high frequency changes of visual quality.

Statistical Evaluation

In order to also numerically compare the temporal quality prediction to the reconstructed
quality curves, the correlation coefficients and the RMSE of the quality values are calcu-
lated per GOP. That means for all NG = 320 GOPs a pair of ŷi and qi is built and used
for statistics. Table 3.9 on the next page shows the results for each video sequence and
Figure 3.10 on the following page, the corresponding scatter plot. The individual scatter
plots for each sequence can be found in appendix A.2.2 on page 66.
First of all, the correlation coefficients are on the very high level of about 0.9 and the

RMSE is reasonably low, which are a very good values for a no-reference video quality
metric. The individual sequences show even higher correlation – except for the sequence
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3. Evaluation of GOP-based Video Quality Metrics

Table 3.9.: Correlation coefficients and RMSE between reconstructed and predicted quality
progression curves

Sequence Pearson Spearman RMSE

City 0.989 0.963 0.142
Football 0.871 0.877 0.149
Foreman 0.942 0.944 0.126
Table 0.963 0.963 0.085
Tempete 0.947 0.965 0.103

all 0.893 0.898 0.124

Football. As stated above, this sequence has the strongest quality changes over time,
and especially the heavy drop in quality around GOP 7 cannot be represented by the
subjective test method. At this point of time the camera pans very quickly and at the
lower bit rates the visual quality becomes really bad.

Conclusion

In general, the results of the temporal quality prediction look very promising. Of course,
it is somehow problematic to evaluate an objective quality metric with an untested sub-
jective test methodology and vice versa; in this case it was the only option. Particularly
with video sequences as short as the ones used here the proposed test method seems to
work really well. The fact that the quality prediction per GOP provides good results has
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Figure 3.10.: Scatter plot of the reconstructed and predicted GOP quality values for the tem-
poral quality metric
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3.3. Evaluation of Temporal Quality Prediction

already been stated in the section about length-independent quality prediction, so it is
very plausible that the quality prediction for the individual GOPs provides reasonable
results as well.
A general problem of the temporal quality prediction as described here is that there is

no temporal subjective data available to train the model with. It can be assumed that
the performance would further improve if real temporal data was used instead of the
overall MOS, that can be measured by the known subjective methods.
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4. Summary

In this thesis I was able to achieve three things. At first, I showed how to improve the
design of video quality metrics using multi-way data analysis by making the training and
the quality prediction independent of the length of the video sequences. The proposed
no-reference metric is based on features extracted from H.264/AVC bitstreams and makes
use of the GOP-structure of H.264/AVC encoded video. It turns out that averaging the
per-GOP estimated quality values of a video sequence results in a quality estimation
that correlates very well with the perceived quality as measured in subjective tests. The
statistical results show that this metric performs equally well as a corresponding length-
dependent metric and outperforms common full-reference metrics. Apart from that, the
main advantage of the presented metric is its improved universality when it comes to real
world application. What remains is the drawback that all video sequences need to be
encoded with the same GOP-length, but this is less inconvenient than demanding equal
lengths for the complete sequences. What is more, this is very common in broadcasting
applications.
Then I developed a new method for subjective tests of visual video quality that allows

the testing of temporal quality progression. The method is well-suited for the short video
sequences (about 10 seconds) that most of the popular datasets consist of. At least the
approximate shape of the temporal quality changes in a video sequences can be repre-
sented by three comparatively easy questions. A subjective test using this method needs
to be software-based as the test subjects should be able to control the test autonomously.
Therefore, I modified the existing software QualityCrowd 2 in order to support the test
method.
Finally, I showed that the temporal prediction per GOP is highly correlated to the

subjective results obtained by the presented method. This creates the possibility to use
data analysis-based video quality metrics in order to predict the visual quality with a
high sampling rate. As with the length-independent quality prediction this does not
require the introduction of new mathematical concepts; it is only necessary to split the
video sequence into small subsets. In order to validate the temporal quality prediction, I
carried out a subjective test according to the proposed test method with 21 participants
and reconstructed the temporal quality from their answers.
Additionally, my results confirm the validity of the multi-way PLSR-based metric as

presented by Keimel et al. [20] and the 2D-PCR based metric as discussed in [27]. By
applying the metrics to different datasets than in the original publications, I can confirm
that by taking into account the temporal dimensions metrics based on data analysis
improve.
Despite the fact that overall the results presented in this thesis are very positive,

there are some open questions left. Especially the temporal quality prediction and the
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4. Summary

new subjective test method require some more investigation. Although I did argue that
SSCQE is not a suitable method for the short video sequences used here, one should
apply the temporal metric presented here on longer sequences and compare the results
to SSCQE data. My subjective method needs to be validated in more tests; the one I
carried out is of course not sufficient to finally prove the validity of the method. The
length-independent quality prediction seems to work very well but, as I have discussed,
there can be some problems when using datasets, that are too small. In general, I think
there is considerable need for a more detailed evaluation of the influence of the size and
nature of training sets on data analysis-based quality metrics.
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A.2. Additional Scatter Plots

A.2.1. Length-Independent Quality Prediction
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Figure A.1.: Scatter plots of the compared metrics on the IT-IST dataset
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Figure A.2.: Scatter plots of the compared metrics on the TUM 1080p25 dataset
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Figure A.3.: Scatter plots of the compared metrics on the TUM 1080p50 dataset
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A.2.2. Temporal Quality Prediction
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Figure A.4.: Scatter plots of the quality predictions and reconstructions of each GOP from the
subset of the IT-IST dataset
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Figure A.5.: Quality curve predictions and reconstructions for the sequence City from the
IT-IST dataset. The dotted lines represent the corresponding means.
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Figure A.6.: Quality curve predictions and reconstructions for the sequence Football from the
IT-IST dataset. The dotted lines represent the corresponding means.
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Figure A.7.: Quality curve predictions and reconstructions for the sequence Foreman from the
IT-IST dataset. The dotted lines represent the corresponding means.
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Figure A.8.: Quality curve predictions and reconstructions for the sequence Table from the
IT-IST dataset. The dotted lines represent the corresponding means.
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Figure A.9.: Quality curve predictions and reconstructions for the sequence Tempete from the
IT-IST dataset. The dotted lines represent the corresponding means.
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